N91-10307

A NEW BEAM THEORY
USING
FIRST-ORDER WARPING FUNCTIONS

C.A.IE and J.B. KOSMATKA
DEPARTMENT OF APPLIED MECHANICS AND ENGINEERING SCIENCE
UNIVERSITY OF CALIFORNIA, SAN DIEGO
LA JOLLA, CA 92093

o 85
FRESED

SdEAGE BELANK NOT FIiLMED



86

BASIC IDEA

Due to a certain type of loading and geometrical boundary conditions, each beam will
respond differently depending on its geometrical form of the cross section and its
material definition. As an example, consider an isotropic rectangular beam under pure
bending. Plane sections perpendicular to the longitudinal axis of the beam will remain
plane and perpendicular to the deformed axis after deformation. However, due to the
Poisson effect, particles in the planes will move relative to each other resulting in a form of
anticlastic deformation. In other words, even in pure bending of an isotropic beam, each
cross section will deform in the plane.

If the material of the beam above is replaced by a generally anisotropic material, then the
cross sections will not only deform in the plane, but also out of plane. Hence, in general,
both in-plane deformations and out-of-plane warping will exist and depend on the
geometrical form and material definition of the cross sections and also on the loadings.

For the purpose of explanation, an analogy is made. The geometrical forms of the bodies
of each individuals are unique. Hence, different sizes of clothes are needed. Finding the
sizes of clothes for individuals is like determining the warping functions in beams.

A new beam theory using first-order warping functions is introduced. Numerical
examples will be presented for an isotropic beam with rectangular cross section. The
theory can be extended for composite beams. (Fig. 1.)

Figure 1.  Analogy between determining the (first-order) warping functions
and the proper size of clothes for individuals.



CANTILEVER BEAM

Consider the case of an isotropic rectangular cantilever beam with a tip loading ( P ). For
the purpose of comparison to the St. Venant elasticity solution, St. Venant boundary
stresses shall be taken into account. These self-equilibrated boundary stresses are shown in
the figure below. XYZ is the system coordinate ; L is the length ; H is the height, and B is
the thickness of the beam. Comparison will be made with respect to the plane stress St.
Venant elasticity solution. Hence, the comparison will be more valid as the thickness goes
to zero. (Fig. 2.)
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Figure 2. Cantilever beam with its boundary conditions.
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ASSUMED DISPLACEMENT FIELD

The u,v,w are displacement components parallel to the x,y,z coordinate axis (refer to figure
2.). Mo is the transverse displacement of the axis of the beam parallel to the x coordinate
axis. @ is the bending rotation of the beam axis and its positive sense is defined as in the
direction of the positive y axis. M and Q are the bending moment and shear force,
respectively. q is the distributed load. U and V are the in-plane deformation functions
parallel to the x and y coordinate axis,respectively. W is the out-of-plane warping function
parallel to z coordinate axis. E is the Young modulus,and I is the moment of inertia of the
CTOSS section.

Strains are computed from the first set of equations. From Hooke's law [ (o) =[C](®) ],
stresses can be calculated. Using the definition of moment, M can be solved in terms of E,
I and ¢. The final form of the displacement field is as shown in the second set of equations.
The detail is as follows.

By definition of moment,

M(z)= | xozdA
A
Assuming that (in consistency with using only the first-order warping functions)

Q@ =-q(@ =0, the moment will be expressible as being M =-El¢@), By equilibrium

Q@ =M@ =-EI ¢@), Substituting M and Q into the first set of equations , the final form of
the displacement field is obtained.

It is important to note that no assumption is being made except the assumed displacement
field itself. (Fig. 3.)

u(x,y,z) = uo(z) + M(z) U(x,y) v(x,y,2) = M(z) V(x,y)
w(x,y,2) = - X 9(z) + Q(z) W(x,y)
where

Ux,y) =- 21})3 ; (x2-y?) V(x,y) = - VEBf Xy
. o 24+v
W(x,y)=W(x)=A6EIx3

Final Model
u(x,y,z) = uo(z) + ¢'(z) U(x,y) v(x,y,z) = ¢'(z) V(x,y)
w(x,y,z) = - x ¢(z) + ¢"(z) W(x)

where now

v

U(X,Y)= 5()(2_)12) V(X,)’)=1)XY
Wix) = 2+ 3

Figure 3. Proposed model in a case of rectangular cross section.



LAYOUT OF THE NODAL POINTS

The finite-element model is developed using a layout of the nodal points as shown below.
The layout is chosen such that all terms in the strain energy expression are taken into
account. The minimum order of polynomials that is required for ® based upon the strain
energy expression is three. Hence a four-node layout is required for @, A five-node layout
is selected for B0 because, from the physical point of view, Uo is one order higher. Other
polynomials could also be selected (Fig. 4.)
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Figure 4. Layout of the nodal points in the finite-element model.
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FINITE-ELEMENT MODEL

Using the principle of stationary potential energy a finite-element model is obtained. The

term {8M} in the equation is due to the fact that, instead of applied concentrated resultant
forces, 'applied’ St. Venant distributed stresses (through the cross section) are to be
considered. If applied concentrated resultant forces do exist in the reality, then this term

will vanish. The term {8m} is present due to the fact that the distributed forces are applied
on the upper surface of the beam. These additional terms exist because a beam theory that
accounts for in-plane deformations and out-of-plane warping is used. Had an Euler-
Bernoulli beam theory been used (or likewise Timoshenko beam theory), all these terms
will vanish no matter how the loads are applied. All other terms are the usual terms that
result when developing a finite-element model based upon an Euler- Bernoulli theory. For
example

() = [q[N]" dz
where q is the distributed load and [ N ] are the shape functions. (Fig. 5.)

5
us(z) = ;Uoj d{2)
P

4
¢(2) = 2.9;6{2)
j=1
Uoj | @j are Lagrangian type shape functions.
Equilibrium equations

[Kit]sxs  [K12) 544 {uo}sx1 {P)sxi

[K2t]axs  [K22]sx4 {@}ax1 {M}axi

{O)sxi N
{8M}ax1 {5m}4x1

Figure 5. Finite-element model.



TIP DISPLACEMENT OF A CANTILEVER BEAM

A semi-logarithmic plot of aspect ratio versus nondimensionalized tip displacement is
shown below where the tip displacement is nondimensionalized by dividing by the Euler-
Bernoulli solution for a given load and geometry. Aspect ratio is defined as the length
divided by the height of the beam. The Poisson ratio is taken equal to 0.25. All theories are in
agreement for slender beams. For this type of loading, the elasticity solution, the proposed
theory, and the Timoshenko using k equal to 2/3 are in perfect agreement. Using a k factor
equal to 0.8475 [ 1] in the Timoshenko theory results in a stiffer beam (compare to using
k equal to 2/3).

Solutions were calculated for extremely long slender beams ( L/H = 100 ) to insure that
the current beam element converged to the Euler-Bernoulli solution and did not "shear-
lock". All calculations were performed assuming that B/L is equal to 1/8000. This
selection was made to insure that the current model can be directly compared to the plane
stress elasticity solutions. (Fig. 6.)
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Figure 6. Tip displacements of a tip-loaded cantilever beam.
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NORMAL STRESSES AT THE ROOT OF A CANTILEVER BEAM

Consider a case of the cantilever beam with an aspect ratio equal to three. The abscissa is
the nondimensionalized normal stresses with respect to the Euler-Bernoulli normal stress at
the top of the surface, i.e., o, , The ordinate is the nondimensionalized X-coordinate where
the top and bottom surfaces of the beam are defined as -1 and 1, respectively. As can be
seen, all theories are in perfect agreement. (Fig. 7.)
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Figure 7. Normal stress at the root of a tip-loaded cantilever beam.
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TRANSVERSE SHEAR STRESSES
AT THE ROOT OF A CANTILEVER BEAM

Nondimensionalized shear stresses with respect to the elasticity shear stress at x equal to
zero are made, i.e., nondimensionalized with respect to Ta. . The ordinate is the
nondimensionalized X-coordinate. The results from the proposed theory are in perfect
agreement with the elasticity solutions. If the Timoshenko theory is applied, constant shear
stress distribution is obtained. In fact, their values are equal to the average shear stress, ie.,
P/A where A is the area of the cross section and P is the applied concentrated load. In this
case, they do not depend on the value of the shear correction factor (k). Hence, the shear
correction factor will influence the stiffness and shear strains of the beam, but not the shear
stresses. Since the shear stresses are independent of k, then the shear strains must vary
proportionally to the inverse of k. For an Euler-Bernoulli beam, a contradiction exists. If
shear stresses are computed from the shear strains, then their values will vanish. On the
other hand, from the equilibrium point of view, shear stresses cannot be zero. Using the
principle of equilibrium, shear stresses can be obtained. (Fig. 8.)
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Figure 8. Transverse shear stresses at the root of a cantilever beam.
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TABLE OF COMPARISON FOR THE STRESS COMPONENTS
OF A CANTILEVER BEAM

Results from the theory of elasticity for the stresses are available. Due to the computational

round-off errors, the coefficients € will exist in the proposed theory. These terms become
smaller as the value of B (the thickness) goes to zero. If truncation errors could be

eliminated, the €i terms will go to zero as B goes to zero. This is due to the fact that the
out-of-plane warping function W(x,y) was taken from the plane stress solution, which is
then only a function of x, i.e, W = W(x). This is done mainly for the purpose of
comparison and simplicity. In order for the current comparison to be valid, the thickness
of the beam should be taken very small (B -->0). Asone can see, apart from the round-
off errors, the proposed theory is in perfect agreement with the elasticity solution for the
whole body (plane). (Fig. 9.)

O:=€1XZ2+C1 XZ+8&2X3+8E3X

Tax =€4Z3+€5224+€6X22+8724+C2 X2+ Cs

0x=0y=€8x3 Tyz—_-Txy:O
Proposed Theory Timoshenko Euler-Bernoulli
Elasticity Elasticity Elasticity
C1 1.00 1.00 1.00
C2 1.00 0.00 ] 000
c3 oo | o7 | 000
€& — 0 as B (the thickness) goes to 0

Figure 9. Comparison of the stress components relative to
the elasticity solutions.



SIMPLY SUPPORTED BEAM

Since the model is developed for tip loadings, it may have slight deficiencies for
analyzing beams with higher-order distributed loads. In this example, the effects of the
higher-order warping functions will be shown. Although it is possible to extend the model
incorporating some degree of higher-order warping functions, for beam-type structures
it may not be necessary. Higher-order warping functions play an important role for beams
with small aspect ratios (closer to solid structures). But, as the aspect ratio gets smaller,
the St. Venant solution becomes trivial in the practical sense (in reality). Another way of
defining beams is as follows. A structure (structural element) can be considered as being a
beam if the higher-order warping functions play insignificant roles. (Fig. 10.)
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Figure 10. Simply supported beam with its boundary conditions.
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MID-LENGTH DISPLACEMENT OF A SIMPLY SUPPORTED BEAM

It is very interesting to note that, although the Timoshenko theory for k equal to 2/3 gives
the exact results (for the displacements) in the case of a cantilever beam, it gives the most
flexible structure in the case of simply supported beams with constant distributed load. The
proposed theory still gives very accurate results for the displacements. As can be seen, the
effect of higher-order warping functions in the displacements, in this typical case, is very
insignificant. (Fig. 11.) The effects in the stresses can be seen in the next figure.

[ uo / (Wo)Euler-Bemnoutli ]

4.0

3.5 4

3.0 1

2.5

2.0 1

1.5 1

e L

—_——--

-_——-—--

Elasticity

Proposed Theory

Timoshenko, k=0.8475

Timoshenko k=2/3

Euler-Bernoutli

Aspect Ratio [ L/H ]

Figure 11. Displacements at mid-length of a simply supported beam.



NORMAL STRESSES AT MID-LENGTH OF
A SIMPLY SUPPORTED BEAM

Consider the case of a simply supported beam with a uniformly distributed load where
the aspect ratio (L/B) is equal to three. Nondimensionalized normal stresses are with
respect to the Euler-Bernoulli stress on the bottom surface of the beam. It is important to
note that the elasticity solution results in a cubic normal stress distribution as opposed to linear
as suggested by the Euler-Bernoulli or Timoshenko beam theories. (Fig. 12.) In the next
figure, a closer look at the lower portion of the cross section is presented.
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Figure 12. Normal stresses at mid-length of a simply supported bean ..
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NORMAL STRESSES AT MID-LENGTH FOR
THE LOWER PORTION OF THE CROSS SECTION

As can be seen, the elasticity solution gives higher normal stresses at the top and bottom
of the beam compared to the Euler-Beroulli or Timoshenko beam. For this typical
numerical example (with an aspect ratio equal to three), the elasticity normal stress at the
bottom (or the top) is 3 percent higher, and the proposed theory gives 2.7 percent higher.
This effect is due to the presence of distributed load or, in other words, due to the presence
of higher-order warping functions. As the aspect ratio gets smaller, its effect will be more

significant. (Fig. 13.)

0.75 -

[ X/(H/2)]

+

Elasticity

=0 Proposed Theory

~—®-- Timoshenko, any k & Fuler-Bernoulli

1.00
0.5

[ O / ( 62 )Euler-choulli ] 1.03

Figure 13. Detail of figure 12 for lower portion of the cross section.



TRANSVERSE SHEAR STRESSES AT LEFT-END
OF A SIMPLY SUPPORTED BEAM

The same nondimensionalization as is found in figure 8 is made. The proposed theory
results in perfect agreement with the elasticity solution. Again, the Timonshenko beam gives
a constant shear stress distribution which is equal to R/A where R is the reaction force at the
leftend. (Fig. 14.)
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Figure 14. Shear stresses at the left-end of a simply supported beam.
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TABLE OF COMPARISONS FOR THE STRESS COMPONENTS
OF A SIMPLY SUPPORTED BEAM

All underlined terms exist in the plane stress elasticity solution. The terms with the
coefficients hy and hz are the nonclassical terms and become important only for beams with
very small aspect ratios. As a matter of fact, these two terms, found in the expression of o2,
are self-equilibrated in the section planes. Obviously both the Timoshenko and Euler-
Bemoulli beam theories cannot capture these higher-order terms. The proposed theory is still
able to capture these two terms. Although it is not accurate inside the body of the beam, it
gives an accurate result at the top and bottom of the beam, which are, in fact, the most
important points (for normal stresses) for practical purposes.

Due to the presence of the distributed load, the stress component Ox will not vanish. The
proposed theory gives a meaningless result in the sense that it does not satisfy the boundary
conditions at the top and bottom of the beam. This is not surprising because the theory accounts
for only first-order warping functions. Although it is possible to extend the theory
incorporating higher-order warping functions, it may not be necessary for practical
purposes. It is important to note that for this typical beam structure, the most important stress
components are Oz and Tzx, (Fig. 15.)

C:=CiXz2+Ccrxz+hx3+hyx

Tax =€1 23+ 82722403 X2Z2+C4Z+C5X2+Cq

Ox =C7.X3 +C8 X + €9 Oy =d; x3 Tyz = Txy = 0
Proposed Theory Timoshenko Euler-Bernoulli
Elasticity Elasticity Elasticity
Ci 1.00 1.00 oo
R oo | o | oo
h1 ----- 1.35 0.00 000 |
hy 1.63 0.00 oo0
o | o | o000 | o0
o | o | 061 | 0.00 1
R oo |7 e | 000 |
[ | oo | 061 | 0.00
In the proposed theory, Ox=0y=d; x3 ; dy — 104,

Figure 15. Comparison of the stress compoments relative to the
elasticity solutions of a simply supported beam.



FUTURE STUDIES

Future studies will include vibration analysis, methods to determine the warping functions
for a typical beam cross section, geometrical nonlinearity, and an extension for composite
beams. Basically the proposed theory will be extended for general cross sections and
material definition (composite beams) such that they can be applied for any special case.
(Fig. 16.)
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Figure 16. Future studies.
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